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W. L. Briggs. A. C. Newell. and T. Sarie (J. Comput. Phys. 50, 83 (1983)) studied the 
solutions of a class of discretizations of U, + au, + UU, = 0, where “a” is a constant. They dis- 
coxvered that the numerical solution of the discretization becomes unbounded despite the fact 
that theoretically the solution should remain bounded. They attributed this anomalous 
behavior to a focusing mechanism. In this paper we make use of a multiple scales analysis and 
show that the instabilities are caused by a resonance effect introduced by the discretizations. 
The contributions from the space and time discretizations are analysed separately and in 
detail. Thus, the structure of the focusing mechanism becomes transparent. c‘ :98x .AC~~UIW 

Pres Inc. 

1. INTR~DUCTI~N 

The stability of nonlinear partial difference equations must be ranked as one of 
the more important questions in numerical analysis. In this paper we are concerned 
with difference schemes arising from discretizations of 

u, + Lal, = 0. ei, 

Despite significant progress on partial difference equations arising from (lj by 
several people, including Richtmyer and Morton [7], Fornberg [2], Newell [6], 
Briggs et a/. cl], Sanz-Serna [8, 111, and Sloan and Mitchell [lo], it is safe to say 
that the stability of these difference schemes is not yet completely understood. 

The earlier investigators already recognized that solutions of (1) which oscillate 
around zero are particularly susceptible to instabilities. Let us now consider 
solutions of (I) which are perturbations around the constant solution u = a; i.e.. let 
us consider 

II, + au, + uti, = 0, 42) 

where II is regarded as the perturbation and therefore considered to be small. In 
addition we only consider 2n-periodic solutions of (2 j, i.e., 

5s1.75 l-3 

u(s + 2x, t) = u(x, f ). 
31 
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Introducing a uniform grid with grid length 

h := 27$N, 

we follow Briggs et al. [l] and semi-discretize (2) by 

where 

06861. 

In order to ensure periodic solutions we impose the boundary conditions 

For large values of Uj in (3) the nonlinear terms will dominate which may result in 
an explosive growth of the solution. If, on the other hand, Vi is small, then 
solutions of (3) are expected to behave rather like solutions of the linear poblem 

which allows solutions of the form 

Ui=e i (k-r, ~- co,) 

provided o satisfies the dispersion relation 

ok = i sin(kh). (5) 

Since we assume 27c-periodic solutions, k is an integer. 
Briggs et al. [l] considered solutions of (3) of the form 

Ui=A(t)e”kq+c.c. (6) 

where C.C. indicates the complex conjugate of the preceeding terms. For k=+N, 
A(t) and its complex conjugate ,4*(t) are given by 

(7) 

Briggs et al. solved (7) by the leapfrog or explicit midpoint rule for 0 # 4 and 
obtained a threshold on the magnitude of the solution, if the solution is initially 
below the threshold the solution remains bounded. However, if for some reason the 
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solution exceeds this value the nonlinear processes dominate and the solution 
rapidly becomes unbounded. Consult Sloan and Mitchell [IlO] for the connection 
with the earlier work of Fornberg [2]. 

The situation becomes more complicated when we attempt to solve 13) with the 
leapfrog scheme. Rather surprisingly the numerical experiments of Briggs EI ai. 
showed that initial conditions which lead to bounded solutions in the case of (7) 
may lead to unbounded solutions in the case of the partial difference scheme 
obtained from (3). Their numerical experiments indicate that the Fourier modes in 
the vicinity of the original or fundamental mode, k, first start to grow and from 
these modes energy is fed into more modes until most or all modes are excited. In 
physical space this causes the solution to develop sharp peaks at isolated positions. 
As soon as a peak exceeds the threshold value the solution quickly becomes 
unbounded. In their investigations into the origins of the instability Sloan and 
Mitchell [lo] did a Benjamin-Feir side-band analysis which led to necessary 
conditions for the onset of the instability. 

In this paper we are also concerned with the processes up to the stage where the 
fuh nonlinear effects take over and the solution rapidly becomes unbounded. 
Although the results of our investigations agree entirely with that of Sloan and 
Mitchell, within the frameworks of the various limitations imposed by the tech-i 
ques employed, we believe that our investigations shed new light on the structure of 
the mechanism responsible for the instability. The technique used in this paper was 
inspired and resembles that used by Moore [S]. 

This paper is organized in two parts. In the first part we investigate the semi- 
discrete system (3). The basic ideas needed for the second part are developed and 
as a result we show that the semi-discrete system (3) does not become unstable. In 
the second part we consider the leapfrog discretization of (3) and using the ideas 
discussed in the first part we explain in some detail why the leapfrog time 
discretization can become unstable. 

I. SEMI-DISCRETIZATION 

2. Wave-Train Sohrions 

In the previous section it was mentioned that (3) may admit solutions of the form 

u, = &(e’ikxJ-okf’ + C.C.) + O(E2), (8) 

where ok satisfies the dispersion relation and E < 1. More precisely, assume a steady 
wave solution of (3) of the form 

Uj=i 5 al[ec’“kxj-sr)+C.C.I, 
I= 1 

where c and the a, are unknown. 
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We emphasize that it is reasonable to expect solutions of this form only for small 
Vi. If we substitute (9) into (3) and gather coefficients of c+“‘~.‘J-~“’ we obtain the 
following system of equations: 

for I= 1, 

-cu,+~sin(khjul+&sin(kh) f a,a,+ 
s=l 

+g 2 (sin((s+ ljkh)-sin(skh 
s = 1 

for I> 1, 

(10aj 

1 
-clo,+~sin(ikh)o,+-&sin(lkh)[‘~ia,a,,+Z f aJa,+sl 

i=1 r--l 
+1-o l--I y c (Xl) C sm s -1 usales+ f (sin(.(/+s) kh)-sin(skhj)a,a,+, =O. 

s=l s=l 1 (lob) 
These equations may be solved by expanding a, and c in Stokes fashion (Whitham 
C121, Moore CV), 

a, =.s 

a,= f EVA,,, I>1 (11) 

This may now be used to calculate the solution (9). In particular this yields 

c = Wk + 0(&Z) (12) 

with ok given by (5). However, we have no proof that (10) can actually be solved. 
Henceforth we assume that (3) possesses a solution of the form (8) for E G 1. For 
any particular value of k this assumption’ should be verified numerically and an 
upper bound on E established. 

3. Grid Resonances 

Consider a solution oj of (3) of the form (8) and let dj be a perturbation of I?, 
i.e., 

Uj= Vj+djT (13 
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where 

If ( 13 ) is substituted into (3 ) and linear terms in di retained, it follows that 

If we substitute (8, for oj in (15) and (14) for 6, and collect coefficients of e’.“I, we 
obtain 

where 

and 

ni=~(8sin(sh)-(I-B)jsin(kh)-sjn((s+ii)lr)jj. (17b) 

We observe that only those terms CC,, CX~ appear in (16) whose index n satisfies 

Obnb:N. 

For smail values of E we may follow the reasoning of Moore [ 5 ] and consider i 
O(s) terms in (16) to be source terms for the equation. 

L?, + im,rl, = 0. {18j 

Thus, for those values of s in (16) for which either 

o,=o,+o,~, (19a) 

or 

W,=C?),+k-Wk (19b) 

the O(E) terms in (16) will besolutions of (18), i.e., M, grows linearly in time. It is 
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obvious that (19a) will be satisfied for s = k. For values of s in the vicinity of k 
(19a) will be approximately satisfied, i.e., 

may be small and it is possible that this resonance will be strong enough to cause 
linear growth in time. In the next section this situation will be analyzed, by using 
the method of multiple scales in a similar fashion as Moore [5] did. 

4. A Multiple Scales Analysis 

Assume that for a certain value of s, 

where 6 = 0( 1). We are particularly interested in values of s close to k, i.e., 

s=k+r and s=k-r 7 

where r is a small positive integer. If 6 in (20) is defined by 

then, if rh 4 1, it follows from (5) and (20) that 

@lb) 

The following relations follow from (21) and are needed in the subsequent analysis, 

~k=t(ak+r+mk-r) 

w,=;(Wk+r-Wk-r)-EB 

W -wk+t(wk+.-Wk-rr) k+r- 

wk-r=Wk-~(wk+r-wk--). 

(224 

Wb) 

WC) 

Wd) 

According to the method of multiple scales, (see, e.g., Jeffrey and Kawahara [3]) 

CI, = 2 dct:‘( To, T,) ..a), (23) 
j=l 

where the slow time variables Tk are given by 

Tk = Ekt, k=O, 1,2, . . . . (24) 
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If (23) and (24) are substituted into (16) and use is made of (22); we obtain from 
O(E) terms: 

4, r=Ak+r(TL, T,, ~..)e~~cOk+~or’ro 

u:_,.=A~-~(T~, T,, ...)e-‘cWk-cUr~To 

ai = A,(T,, T,, . ..) e-C’“rTo. 

The O(s2) contribution is 

(2Sa) 

(Xbj 

(25c) 

da2 
*+i(w,+w,)cc:+,+ 

da’ 
*+ i&t’ kir 

0 1 

+ iC,,,e -iwkroa~+iDk+reLwkTO~~~-(2kfr!=Q, (26a) 

da:- da1 
----l+L.(WI,-O,)a:~.,+~-iba:_, 

dTo dTo 

Recall that a I‘*” denotes the complex conjugate and we assumed that k is such that 

There is no loss of generality by this assumption. 
If (25) is substituted into (26) the secular terms are removed by 

dA 
$+c.6Ak+r+1.Ckii.4r=0 

I 

dA 
A-ihAk-r+iCk-mrA;=O 

di-1 

~-~~A,+~C.A:~.+~D~A*,,=D. 
1 

It follows readily from (27) that Ak+, and -4k--r are of the form 

A k&r- eaT’, 

(27a) 

(27bj 

(27~) 

where ;1 is given by 

-(d2+Lf) 
A2= -62 

i > 
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A = Ck,,.D,- C,_,C,. 

From (28) it is clear that a necessary condition for the side bands to grow exponen- 
tially on the T, time scale, i.e., linearly on the t time scale, is 

6’+A<O. (30) 

This condition can only be satisfied if A < 0 and together with (30) this provides an 
upper bound on the value of 6. From (21) follows that an upper bound on 6 implies 
a lower bound on E. Thus, in order to have instability on the T, time scales the 
resonance needs to be strong enough and this is only possible if E, i.e., the amplitude 
of the fundamental wave-train (8) is big enough. On the other hand, in Section 2 we 
argued that E needs to be small in order to have a wave-train solution. It is 
therefore possible, that one condition may exclude the other, and as we show in 
subsequent sections this indeed appears to be the case. 

5. The Stability Condition 

In order to analyze the meaning of the stability conditions (28) and (30), assume 

rh+ 1 

in which case 

d=r2[(2~+1)(1-~)cosZ(kh)+2(2~*-2~+1)cos(kh)+(28-1)(1-8)]. (31) 

From (31) follows that (30) cannot be satisfied for small values of k. In fact all 
values of k such that 

2rrk 6 N arc cos( fi - 1) (32) 

have A > 0 for all 0 < 19 < 1. For kh 4 1 in (5), the numerical dispersion relation is a 
good approximation of the corresponding linear one. In this case, (32) guarantees a 
stable solution. The optimal value of 8, which according to (31) allows the least 
number of potentially unstable modes is 0 v -0.7. This value is close to the value 
t7 = f used by Briggs et al. [I] for different reasons. 

6. Examples 

It is not easy to see if the two opposing conditions on E, namely E smaller than a 
threshold value to ensure a steady wave-train solution and E bigger than a certain 
value to provide strong enough resonances for instability, have any region of 
overlap. In the present section we investigate specific examples. 
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6.1. 0~ Mode Solution 

We return to the example of Section I. Ignoring for the moment the obvious 
choice 8 = 3 we follow Sloan and Mitchell [lo] and set in (7j 

A(r) = X(r) + (‘Y(t) 

to obtain 

.&OY+f(2-3O)XY 

i’= -wX+; (2 -30)(X’- I”). (33b) 

(33aj 

where we used the simplified notation o instead of w,,.,,,%~ 

Following standard practice, let 

X(t) = E(t) cos(q(t)) 

Y(t) = c(t) sin(r;(t)), 

(34ai 

(34b) 

i.e., we transform in phase-space to polar coordinates. It is now readily shown lknat 

c(t)=; (2-36)~(t)~[3 sin(q(r)j-4sin3(q(rj)] (35; : 

and 

q(t) = --w +$ (2 - 38) E(t)[4 c5s3(q( r,) - 3 cos(rj(r))]. (30) 

Making use of an averaging procedure (Jordan and Smith [4] ), it follows that 

E(t) = c* + O(E3) (3-h) 

and 

q(r) = --or + O(2), (3%) 

where .q, is a small constant. Thus a solution of the form (8) with k = $V has been 
established. 

We note that Sloan and Mitchell [IO] proved 

to be necessary and sufficieht to prevent nonlinear instabilities in this particular 
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case. Clearly 13= 4 places no restriction on Ed. This is, of course, the choice for 
which (33) becomes linear. In order to test the side-band instability conditions, 
choose 

N= 120, k=40, e = 0, and a = 0.5. 

For r = 1 we obtain d = -1.749 which implies E > 0.58. This value of E is prevented 
by the nonlinear stability condition (38). Thus we conclude that the resonance 
allowed by the nonlinear stability condition is not strong enough to cause side- 
band instabilities. 

For choices of k other than +N we do not have an equivalent for (38) and it is 
therefore difficult to tell if strong enough resonances are allowed within the non- 
linear stability limit. In Table I we choose 

N= 120, 8 = 0, a = 0.5, and r=l 

and calculate the minimum value of F required for resonance for various values of k. 
From Table I it follows that fairly large values of F are required to provide the 

necessary resonance for instability. The numerical evidence we have for the 
threshold required to prevent nonlinear instability appears to require values of E 
less than those given in Table I. 

The same applies to other choices of 8. For instance, 13 = 3 and k = +N require no 
restriction on E to prevent nonlinear instability. However, in this case a value of 
E > 1.5 is required for side-band instabilities. Clearly this value falls outside the 
range for which a multiple scales analysis applies, which forms the basis of the 
estimate. 

6.2. Two-Mode Solution 

Aliasing may also be used to obtain a solution of the form 

Uj(t) = A(t) e i(I;4)Nx,+A*(f),-iil/4)N~j+B(f) ,iil/zW.~,, 

where the complex function A(t) and the real function B(t) satisfy 

(39) 

B(t)=; (O- l)(Aqt)-A**(t)). (4Ob 1 

TABLE I 

Resonance Requirements for Various Values of k 

k 25 30 35 40 45 50 55 60 

bi” 0.59 0.51 0.53 0.58 0.62 0.67 0.70 0.71 



u,(~) = E(ei(k~x-mli,f) + c.c-.) + Ee.fk~r-m@) + o(~‘), 

k,=$N, kz=$N 
(42) 

for small values of s, the arguments leading to (28) may be repeated. Hence, we find 
that the side bands in the vicinity of k, or k2 will grow under the same conditions 
as before. The general remarks made in connection with the previous example 
therefore also apply to the present one. 

II. DISCRETIZING THE TIME VARIABLE 

1. The Leapfrog Scheme 

We now proceed to discretize (3) by the leapfrog scheme, 

U”+1-uUi”-1+a(~+,-U~_1j+~~e((~~~~+1)2 J 

+1/(1-e) u/n(~;+l-U;--l)=O, 

where 

y := AtJh, a := ay, 

and At denotes the fixed time step. 
The dispersion relation pertaining to the linear equation 

Un+l- uy+a(u~,,- t/y,,=o J 

is obtained by assuming a solution of the form 

Vi = e i(k.r,-lot,) 

and is given by 

- (u;-$) 
(43 j 

sin(o, At) = a sin(kh). 
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We note that (39 j is not of the form (8), because of the presence of the &V mode. 
Also no theoretical results providing a threshold on the magnitude of the solution 
(39) are available. However, a naive perturbation analysis gives 

A(t)=E(e ~(~1.‘4).~x,-~roll.~,rt)+C~C~)+ (qEZ), (4laB 

E(t) = E(e 
~((l.‘*)~.~,-~w(l~2iNf) +c,c,) + O(E*)s (41bj 

As pointed out by Sloan and Mitchell [lo], (40) becomes linear if 8 = t which 
implies that the O(E*) terms in (41) disappear. Assuming a steady wave-train of the 
form 
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This gives two values of ok for each k, 

ok =A arc sin(cc sin(k1z)) (46a) 

0: =A (n - Ar 0$j. (46b) 

The main, qualitative, difference between (45) and (5) lies in (46b). Waves travel- 
ling at speeds according to this value of ok are of purely numerical origin and are 
known as parasitic waves. It will be shown that these waves are the primary, but 
not only, destabilising agent in (43). 

8. Grid Resonances 

We proceed as in Part I and assume a solution for (13) of the form 

(47) 

In order to keep our notation as simple as possible we prefer not to assign different 
weights to the two waves I= 1 and I= 2 in (47), although the relative weights 
depend on the way the starting values, U,!, are provided in (43). 

Assuming a perturbed solution of (43) of the form 

where &‘& nj’ and 

y = q! + qy’, (48) 

(WW 
q5; = [ 1 (,;eim-q + c.c.), 5 < E, iw 

m=O 

we may substitute (48) into (43) to obtain to first order in 4;, 

~~+‘-~~-‘+~i~~i”l~-~,:~1)+1’e~U~+l~~+l-~~~l~~7_1) 

+Yi~-e)c(u~+,-~~~,)~~++~(~~+l-~~?-l)]=o. iw 

If we substitute (47) and (49) into (50) and collect coeflicients of e’+, we obtain 

n+l (% -q-l)/(2 Ar)+r’w,c$! 

(51) 
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where C, and D, are given by (17) and 

iv, = (a/h) sin(&). 1521 I 

As before, we choose cc&~,*), where 0 < q d fN. 
In order to develop our intuition for the qualitative effect of the nonlinear 

interaction, we again consider the O(E) terms in (51) to be source terms for the 
homogeneous equation. 

The solution of (53) is of the form 

where 

sin(4 t %,) = At w, (55) 

It is clear that (55) allows two values for %,, namely 

et = w’s, I= 1, 2, 

where of- is given by (46). 
Substituting (54) into the “source terms” in (51) we find that secular terms 

appear and cx, will grow linearly in time if 

co~=o:+wf-, (5&i) 

or 

g”’ = - s U:+Of+k> 171, I, p = 1. 2. (56b) 

The resonance condition (56a) is satisfied if 

s = k; m=l= I, 2; p=l <57&j 

and 

s = 5. AN; m=2; IfPi and I> p = 1, 2. (5%) 

Condition (56b) is satisfied if 

s=$N-k. 7 m=2; l= 1, p=2. jY?c) 

It is already clear from-conditions (57b) and (57~) that the two modes, +i”d and 
$N - k, should become unstable due to the numerical errors given by (44). We also 
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observe that these conditions can only be satisfied if both modes, I= 1,2, are 
present. This prediction will be tested numerically in Section 10. First we investigate 
the stability of the modes in the vicinity of the resonance conditions (57). 

9. Formal Multiple Scales Analysis 

Having extracted the essential information in the form of (56) and (57) from the 
fully discrete dispersion relation (55), we now proceed to a formal multiple scales 
analysis. For this purpose we define the leapfrog operator at a time t as 

a,u(tj= [u(t+dtj- up-dtjy(2 dtj. 

Furthermore, we expand 

a,(t)=p!(TO, T,, . ..). 

where the slow variables Tj are given by 

Ti = &it, j= 0. 1, . . . . 

(58a) 

(58b) 

Schoombie [9] constructed discrete linear operators 8, satisfying 

a,= f Ejiiq. (59) 
j=O 

In this paper we do not make use of the actual form of the discrete operators ~3~; 
appearing in (59). Instead, the qualitative features of the time discretization as 
reflected in (56) and (57) are emphasized which allows us to treat the discrete 
operators similar to their continuous counterparts. The quantitative features where 
the structure of the operators appearing in (59) are taken into account will be 
discussed elsewhere. 

9.1. s=k+r 

We first investigate resonances in the vicinity of k and put 

s=k+r 

where r is small. The resonance conditions (56) become 

i o,+,=o:+w,‘+ES+ 
w;-,= w:-o;-&S-, I= 1,2. 

(604 
(6Ob) 
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It also follows from (52) and (46) that 

If we now substitute (58), (49), and (61) into (50) and proceed as in Part 1. it 
follows that the secular terms at O(E’) are removed by the following equivalent of 
m, 

dA,c+r dT +iM’ k+rb+Akft + iCktrA,=O 
I 

(62aj 

(4210) 

(4&i 

where 

NC+,= cos((co: + 0;) At), (63a j - 
Mf.=cos(~(o~+,--~0~~,jAtj. (6%) 

Cj and Dj are given by ( 17). 
In order to solve (62) we make a few simplifying assumptions. Numerical 

calculations show it to be reasonable to take, for rh < 1, 

6, =6_ =6, M:fr=M;-,=M’, MI= 1. 

If we now assume that Ak+r is of the form - 

Aktr -e,iitri, - 

it follows that 

~4,f26(1-M’)~3+-{d+2M162-(1-M1)262)~: - 

T(M’-1)6(d+2M’6*)iZ.+M’6’(M’~‘+d)=0, (64) 

where A is given by (29). This equation is readily solved to give 

I 

6 
A+= - M’6 (45) 

j[b(l -Ml)* {&‘(l -M’)‘+4(A +M:@))‘,‘]. 
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The expression for L is obtained by substituting 6 with -6. It is clear that we will 
have an instability on the T, time scale if 

d2( 1 f M’)2 + 44 < 0. (66) 

This condition reduces to (30) if Ml= 1. A closer look at (63a) reveals that 

O<M’< 1, (67a) 

M2= -M’ (67b) 

For small values of CC, roughly c( 60.5, M’ = 1; for larger values of CI there is a 
significant decrease in the value of 114’ for most values of k. It is clear from (66) and 
(60) that values of M’ less than 1 have a destabilizing effect, since it implies that 
instability will occur for bigger values of c‘i, hence for smaller values of c. 

If, in Part I, we needed 

for instability, we now need (approximately) 

c>$(l +M’)E(. (68) 

However, a more severe instability occurs in the case of the parasitic wave which 
corresponds to the choice M’ in (66). In this case the bound on E becomes 

e>f(l-MM’)+ (69) 

Since M’ may approach 1, (69) provides a bound on the amplitude which may be 
well inside the limit imposed by the nonlinear instability condition. 

9.2. s=iN-r 

For values of s satisfying 

s=tN-r, 

where r is small, let 

+2,&r =W;+Wf,:2,:Y-~X-r-E6, (70) 

where from (57b), If p and 1, p = 1,2. Proceeding in a similar way as before, we 
obtain 
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where 

Assuming 

. ~ 
and stmilarly for A, 1, 1,N ~_ ,k + rj, it follows from (71) that the eigenvalues i. for both 
A!, 2)l$--r and AcI~2)N-ck+r) satisfy 

A=(M+ -M- j6+ {(ill,. +M_):6’+4C,,;2,,,_,D,,:,,,~~,/i+,,)”:”. ix!) 

Clearly we have instability on the T, time scale if 

since C, > 0; 

Thus we are 

(M+ +x) 62+4C~1.‘Z)*---rD(~~Z)N~(k*r)<01 (73j 

instability will only occur if 

D(l,.Z)N- (k +r) < 0. (74) 

again provided with a lower bound on E. In Table II, this bound was 
calculated using N = 120,~ = 1, a = 0.5, and r = 1. We also used I= 1 for k < $N and 
! = 2 for k > +N in (70), since these values correspond to the strongest resonance. 

The final resonance condition (57~) provides us with a system similar to (71) but 
involving A,,,,,,,,-. and 140,.2jh,--k+r. This shows that the instabilities in A,l!r,,yPr, 
-4;1;2,,v-k-rt and Ail.‘2p--k+r are connected. This will be verified numerically in the 
next section. 

10. Numerical Results 

The numerical results given by Briggs et al. [I] and Sloan and Mitchell [IO] 
illustrate many of our theoretical results. For instance, Sloan and Mitchell give 

TABLE II 

Minimum Values of E Required for Instability 

B 

\ 

0 0.5 
k 

15 6.75 x 1O-3 
45 1.70 x 10-q 2.3 x 10-J 

Note. There 1s no entry for k = 15 and 0 =O.S, since 
D Ii 2,.2.-tk+r,>0 for these values. 
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FIG. 1. Solution and its Fourier transform after (a) 325, (b) 350. 

numerical and theoretical evidence that the instability is related to the leap-frog 
time discretization. They also show that the instabilities are absent if there is insuf- 
ficient energy in the fundamental mode. Briggs et al. give extensive numerical 
evidence of the destabilization of the modes in the vicinity of the fundamental mode 
which formed the basis of the theoretical investigations of Sloan and Mitchell. 

Hence, we concentrate on those results of our theoretical investigations which, in 
our opinion, have not yet been fully appreciated. This will both serve as a 
verification of our theoretical results and also improve our understanding of the 
mechanism causing the instabilities. All the numerical experiments were done on a 
Sperry Micro IT utilizing a 80287 coprocessor. 

The resonance conditions (57b) and (57~) predict a growth in modes +N and 
+N- k. In order to test this prediction, we solve (43) numerically with N= 120, 
y = 1, CI = 0.9, and 0 = 0. The initial condition is given by 

U;= U;=&(l +i)e”‘++c.c. (75) 

with k = +N and ~7 = 0.05. Note that in these results no disturbances were added to 
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Cd) 

FIG, 1 (cankzued). (c) 375, (d) 400 time steps using the initial cwdition (75). 

stimulate any additional modes. The results after 325, 350, 375, and 400 time steps 
are shown in Fig. 1. Note that in all our experiments we unly show half of the 
Fourier modes, the other half being symmetrical, After 325 time steps the modes $V 
and $N- k appear, as predicted by (57b) and (57~). After 350 time steps more 
modes appear in the vicinity of the fundamental mode and the modes $?? and 
$V- k, as predicted by the multiple scales analysis of Section 9. From (62) we also 
expect the low frequency modes to appear. Although these modes do not shcaw up 
in Fig. I, they were observed in many of our experiments, cf, for instance, Fig. 2. 

We observed in Section 7 that the main qualitative difference between the semi- 
discrete equations (3) and the leapfrog system (43) is the parasitic wave allowed 
by the latter. Also in Section 9, e.g., (69), we contributed the cause of instability 
to the parasitic wave. Accordingly, we conducted numerical experiments with the 
following initial conditions 

C$‘= Aoeikxj+ C.C. 

U; = r1 A,& kx~ + CL. 
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(a) 

lb1 

FIG. 2. Solution and its Fourier transform after (a) 400, (b) 600, (c) 1000 time steps using the initial 
condition (76 J. 
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FIG. 3 Solution and its Fourier transform after 1000 time steps using the initial condition (77 1. 

and 

Uy = A,e” k-xl t- C.C. 

r/: = rzAOeik-‘1 f cc., 

where 

r, := --ia sin(M) + (1 - 52 sin’(kh))“’ 

r2 := --r’ sin(kh) - (1 - 2 sin’(klz))‘,“. 

(18a j 

(18b) 

These initial conditions were obtained by applying the leapfrog scheme to the 
linearization of (7), i.e., they were obtained from 

A n+1 -A,-, + 2icr sin(M) 4, = 0. 119) 

It is easily seen that 

‘4, =r,rl, 

TABLE III 

Minimum Values of E Required for Instability for Different Values of : 
(O=O, N=120, a=0.5) 

EX lo-” 0.31 0.42 0.37 0.22 0.00 0.22 0.40 9.47 -- - ~- 
for k = 50 

EX 10-3 
for k=40 

0.28 0.46 0.57 0.61 0.59 0.53 0.43 0.31 0.16 0.09 0.33 
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eliminates the parasitic contribution from (79) and 

eliminates the physical contribution from (79). Thus, (76) admits only a small 
contribution from the parasitic wave and (77) only a small contribution from the 
physical wave. 

Figure 2 shows the results obtained from (76), the values of all the parameters 
are as in Fig. 1. After 400 time steps there is no indication of any instability, as 
compared to the significant instability observed at the same time in Fig. 1, where 
both waves were present. From 600 to 1000 time steps the instability has developed 
in much the same fashion as in Fig. 1. In this case, however, we do note the 
appearance of low wave numbers. The instability need not surprise us; the choice 
(76) does not remove all of the parasitic wave from the nonlinear problem. 

Figure 3 shows the result obtained from (77) after 1000 time steps. Perhaps 
surprisingly, there is no evidence of any instability. However, the meaning of (57b) 
and (57~) is now clear. We need both waves for these resonance conditions to be 
satisfied. The instability appears as a result of the resonance caused by an inter- 
action of the two waves. 

Finally we observe that our analysis may also be able to account for the obser- 
vation of Sloan and Mitchell [2] that the most unstable side-mode is not 
necessarily the one closest to the fundamental mode. In our terminology this means 
that the modes with I’= 1 are not always the most unstable ones. Some indication 
of this is obtained from (73 j. In Table III the bounds on the amplitude E required 
for instability for various values of r as calculated from (70) and (73), are shown. 

11. Conchions 

We have demonstrated how the interaction between the physical wave and the 
parasitic wave, arising from a leapfrog time discretization, may be responsible for 
the instabilities described by Briggs ef a/. [l]. Although we believe this to shed 
more light on the structure of the mechanism responsible for the instability, some 
questions remain unanswered. For instance, our analyses are not sharp enough to 
predict the time of the onset of the instability. As a result the significant difference 
between the results obtained from (76) and (77) remains puzzling. 
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Nore added in proof We are now in a position to improve on the approximations made in the 
multiple scales analyses. Hopefully this will remove some of the remaining puzzles. 
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